	ENGLISH	Specifications		
IOTest [®]	Specificity	FMC7		
FMC7-FITC	Clone	FMC7		
	Hybridoma	P3-NS1-1-Ag4-1 x Balb/c		
REF A07791 100 tests; 1 mL	Immunogen	Human B lymphoblastoid line (HRIK)		
10 µL / test	Immunoglobulin	IgM		
	Species	Mouse		
	Source	Cell culture		
	Purification	Chromatography		
IOTest Conjugated Antibody	Fluorochrome	Fluorescein isothiocyanate (FITC)		
Conjugated Antibody	λ excitation	488 nm		
	Emission peak	525 nm		
	Buffer	0.1 M Tris ; 0.5 M NaN ₃ ; 1 mM Glycine, pH 8 plus 0.2 % BSA		

USE

This fluorochrome-conjugated antibody permits the identification and numeration of cell populations expressing the FMC7 antigen present in human biological samples using flow cytometry.

PRINCIPLE

This test is based on the ability of specific monoclonal antibodies to bind to the antigenic determinants expressed by leucocytes.

Specific staining of the leucocytes is performed by incubating the sample with the IOTest reagent. The red cells are then removed by lysis and the leucocytes, which are unaffected by this process, are analyzed by flow cytometry. The flow cytometer measures light diffusion and the fluorescence of cells. It makes possible the delimitation of the population of interest within the electronic window defined on a histogram, which correlates the orthogonal diffusion of light (Side Scatter or SS) and the diffusion of narrow-angle light (Forward Scatter or FS). Other histograms combining two of the different parameters available on the cytometer, can be used as supports in the gating stage depending on the application chosen by the user.

The fluorescence of the delimited cells is analyzed in order to distinguish the positivelystained events from the unstained ones. The results are expressed as a percentage of positive events in relation to all the events acquired by the gating.

EXAMPLES OF CLINICAL APPLICATIONS

The analysis of the FMC7 antigen is useful for the characterization, numeration and monitoring of B lymphocyte populations (FMC7⁺ to FMC7⁻) in the course of malignant lymphoid blood dyscrasias (e.g. FMC7⁻ for plasmocyte leukaemias and FMC7⁺ for hairy-cell or prolymphocyte leukaemias) (1 - 6).

STORAGE AND STABILITY

The conjugated liquid forms must be kept at between 2 and 8°C and protected from light, before and after the vial has been opened. Stability of closed vial: see expiry date on vial. Stability of opened vial: the reagent is stable for 90 days.

PRECAUTIONS

- 1. Do not use the reagent beyond the expiry date.
- 2. Do not freeze.
- 3. Let it come to room temperature $(18 25^{\circ}C)$ before use.

4. Minimize exposure to light.

- 5. Avoid microbial contamination of the reagents, or false results may occur.
- Antibody solutions containing sodium azide (NaN₃) should be handled with care. Do not take internally and avoid all contact with the skin, mucosa and eyes.

Moreover, in an acid medium, sodium azide can form the potentially dangerous hydrazoic acid. If it needs to be disposed of, it is recommended that the reagent be diluted in a large volume of water before pouring it into the drainage system so as to avoid the accumulation of sodium azide in metal pipes and to prevent the risk of explosion.

- All blood samples must be considered as potentially infectious and must be handled with care (in particular: the wearing of protective gloves, gowns and goggles).
- Never pipette by mouth and avoid all contact of the samples with the skin, mucosa and eyes.
- Blood tubes and disposable material used for handling should be disposed of in ad hoc containers intended for incineration.

SAMPLES

Venous blood or bone marrow samples must be taken using sterile tubes containing an EDTA salt as the anticoagulant. The use of other anticoagulants is not recommended.

The samples should be kept at room temperature $(18-25^{\circ}C)$ and not shaken. The sample should be homogenized by gentle agitation prior to taking the test sample.

The samples must be analyzed within 24 hours of taking them.

METHODOLOGY

NECESSARY MATERIAL NOT SUPPLIED

- Sampling tubes and material necessary for sampling.
- Automatic pipettes with disposable tips for 10, 100 and 500 µL.
- · Plastic haemolysis tubes.
- Calibration beads: Flow-Set™ Fluorospheres (Ref.6607007).
- Red cell lysis reagent with washing stage after lysis. For example: VersaLyse (Ref. A09777).
- Leucocyte fixation reagent. For example: IOTest 3 Fixative Solution (Ref. A07800).
- Isotypic control: FITC-conjugated mouse IaM.
- Buffer (PBS: 0.01 M sodium phosphate; 0.145 M sodium chloride; pH 7.2).
- Centrifuge.
- Automatic agitator (Vortex type).
- Flow cytometer.

PROCEDURE

NOTE: The procedure below is valid for standard applications. Sample and/or VersaLyse volumes for certain Beckman Coulter applications may be different. If such is the case, follow the instructions on the application's technical leaflet.

For each sample analyzed, in addition to the test tube, one control tube is required in which the cells are mixed with the appropriate isotypic control.

- 1. Add 10 µL of the specific IOTest conjugated antibody to each test tube, and the recommended volume of isotypic control to each control tube.
- 2. Add 100 µL of the test sample to both tubes. Vortex the tubes gently.
- Incubate for 15 to 20 minutes at room temperature (18 – 25°C), protected from light.
- 4. Then perform lysis of the red cells, if necessary, following bv the recommendations of the lysis reagent used. As an example, if you wish to use VersaLyse (Ref. A09777), refer to the leaflet and follow preferably the procedure called "with concomitant fixation", which consists of adding 1 mL of the "Fix-and-Lyse" mixture prepared extemporaneously. Vortex immediately for one second and incubate for 10 minutes at room temperature, protected from light.

If the sample does not contain red cells, add 2 mL of PBS.

- 5. Centrifuge for 5 minutes at 150 x g at room temperature.
- 6. Remove the supernatant by aspiration.
- Resuspend the cell pellet using 3 mL of PBS.
- 8. Repeat step 5.
- 9. Remove the supernatant by aspiration and resuspend the cell pellet using:
- 0.5 mL or 1 mL of PBS plus 0.1% of formaldehyde if the preparations are to be kept for more than 2 hours and less than 24 hours. (A 0.1% formaldehyde PBS can be obtained by diluting 12.5 µL of the IOTest 3 Fixative Solution (Ref. A07800) at its 10X concentration in 1 mL of PBS).
- 0.5 mL or 1 mL of PBS without formaldehyde, if the preparations are to be analyzed within 2 hours.

NOTE: In all cases, keep the preparations between 2 and 8°C and protected from light.

PERFORMANCE SPECIFICITY

The antigen recognized by the monoclonal antibody (mAb) FMC7 is a transmembrane glycoprotein with a molecular weight of 104 kDa (7). In circulating blood cells, mAb FMC7 recognizes a B lymphocyte sub-population. Expression of FMC7 molecule is not detected on T lymphocytes, NK cells, polymorphonuclear granulocytes, platelets nor on erythrocytes (7). The sub-population of B lymphocytes recognized by the FMC7 antibody expresses surface immunoglobulins (6-11), thus defining a stage of maturation of the B lymphocytes (7).

LINEARITY

To test the linearity of staining of this reagent, a positive cell target (circulating B lymphocytes) and a negative cell line (DAUDI and NAMALWA) were mixed in different proportions with a constant final number of cells, so that the positive target/negative line ratio of the mixture ranged from 0 to 100%.

Aliquots were stained using the procedure described above and linear regression between the expected values and the observed values was calculated. The parameters of the equation of the linear regression may be used to determine the linearity as well as the range of measurement.

Specificity	Linear regression	Linearity (R ²)	Range (%)
FMC7	Y = 0.934 X + 2.74	0.9961	4 – 95

EXPECTED VALUES

Each laboratory must compile a list of reference values based upon a group of healthy donors from the local population. This must be done by taking age, sex and ethnic group into account, as well as any other potential regional differences.

In our laboratories, the whole blood of 50 healthy adults was treated using the reagent described above. The results obtained for the

count of the positive events of interest with this reagent are given in the tables below:

Lymphocytes	Number	Mean (%)	SD	CV (%)
FMC7 ⁺	50	11.3	5.06	45

INTRA-LABORATORY REPRODUCIBILITY

On the same day and using the same cytometer, 12 measurements of the percentage of staining of a positive target (circulating B lymphocytes) were carried out. The results obtained are summarized in the following table:

Positive Target	Number	Mean (%)	SD	CV (%)
Lymphocytes FMC7 ⁺	12	22.2	1.17	5.3

INTER-LABORATORY REPRODUCIBILITY

On the same day and for the same positive target (circulating B lymphocytes), 12 measurements of the percentage of stained cells were carried out by two technicians and the preparations analyzed using two different cytometers. The results obtained are summarized in the following tables:

Cytometer n° 1:

Positive Target	Number	Mean (%)	SD	CV (%)
Lymphocytes FMC7 ⁺	12	7.2	0.7	9.8

Cytometer n° 2:

Positive Target	Number	Mean (%)	SD	CV (%)
Lymphocytes FMC7 ⁺	12	8.1	0.3	4.2

LIMITATIONS OF THE TECHNIQUE

- Flow cytometry may produce false results if the cytometer has not been aligned perfectly, if fluorescence leaks have not been correctly compensated for and if the regions have not been carefully positioned.
- 2. It is preferable to use a lysis technique with washing as this reagent has not been

optimized for "without washing" lysis techniques.

- Accurate and reproducible results will be obtained as long as the procedures used are in accordance with the technical insert leaflet and compatible with good laboratory practices.
- 4. The conjugated antibody of this reagent is calibrated so as to offer the best specific signal/non-specific signal ratio. Therefore, it is important to adhere to the reagent volume/number of cells ratio in every test.
- 5. In the case of a hyperleucocytosis, dilute the blood in PBS so as to obtain a value of approximately 5×10^9 leucocytes/L.
- 6. In certain disease states, such as severe renal failure or haemoglobinopathies, lysis of red cells may be slow, incomplete or even impossible. In this case, it is recommended to isolate mononucleated cells using a density gradient (Ficoll, for example) prior to staining.

MISCELLANEOUS

See the Appendix for references.

TRADEMARKS

The Beckman Coulter logo, Flow-Set, IOTest are registered trademarks of Beckman Coulter Inc.

MANUFACTURED BY:

IMMUNOTECH S.A. a Beckman Coulter Company 130 avenue de Lattre de Tassigny B.P. 177 – 13276 Marseille Cedex 9 France Customer Services: (33) 4 91 17 27 27

www.beckmancoulter.com

REFERENCES

- Davis, B., H., Foucar, K., Szczarkowski, Ball, E., Witzig, T., Foon, K., A., Wells, D., Kotylo, P., Johnson, R., Hanson, C., and Bessman, D."U.S. – Canada Consensus Recommendations on the Immunophenitypic Analysis of Hematologic Neoplasia by Flow Cytometry: Medical Indication", 1997, Cytometry, 30, 249-263.
- Orfao, A., Ruiz-Arguelles, A., Lacombe, F., Ault, K., Basso, G., Danova, M. "Flow Cytometry: its application in hematology", 1995, Heamatologica, 80, 69-81.
- Braylan, R.C., Orfao, A., Borowitz, M.J., Davis, B.H., 2001, Cytometry, "Optimal number of reagents required to evaluate hematolymphoid neoplasias: Results of an international consensus meeting". 46, 23-27.
- Rothe, G., Schmitz, G. Adorf, D., Barlage, S., Gramatzki, M., Hanenberg,H., Höffkes H.G., Janossy, G., Knüchel, R., Ludwig, W.D., Nebe, T., Nerl, C., Orfao, A., Serke, S., Sonnen, R., Tichelli, A., Wörmann, B., "Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies", 1996, Leukemia, 10, 877-895.
- Jenning, C.D., Foon, K.A., "Recent advances in flow cytometry: Application to the diagnosis of hematologic malignancy", 1997, Blood, 8, 90, 2863-2892.
- Huh, Y.O., Pugh, W.C., Kantarjian, H.M., Stass, S.A., Cork, A., Trujillo, J.M., Keating, M.J., "Detection of subgroups of chronics Bcell leukemias by FMC7 monoclonal antibody", 1994, Am. J. Clin. Pathol., 101, 283-289.
- Zola, H., Moore, H.A., Hohmann, A., Hunter, I.K., Nikoloutsopoulos, A., Bradley, J., "The antigen of mature human B cells detected by the monoclonal antibody FMC7: Studies on the nature of the antigen and modulation of its expression", 1984, J. Immunol., 1, 133, 321-326.
- Ferro, L.M., Zola, H., "Modulation of expression of the antigen identified by FMC7 upon human B-lymphocyte activation: Evidence for differences between activation *in vivo* and *in vitro*", 1990, Immunology, 69, 373-378.
- Brooks, D.A., Beckman, I.G.R., Bradley, J., McMara, P.J., Thomas, M.E., Zola, H., "Human lymphocyte markers defined by antibodies derived from somatic cell hybrids", J. Immunol., 4, 126, 1373-1377.
- Zola, H., Bradley, J.G., Brooks, D.A., Macardle, P.J., McNamara, P.J., Moore, H.A., Nikoloutsopoulos, A., "The human B-cell lineage studied with monoclonal antibodies", 1984, Leucocyte Typing, Bernard, A. et al., Springer Verlag, 363-371.
- Bloem, A.C., Chand, M.A., Dollekamp, I., Rijkers, G.T., "Functional properties of human B cell subpopulations defined by monoclonal antibodies HB4 and FMC7", 1988, J. Immunol., 3, 140, 768-773.