	ENGLISH	Specifications		
IOTest [®]	Specificity	CD3		
CD3-FITC	Clone	UCHT1		
	Hybridoma	NS1 x Balb/c		
REF A07746 100 tests; 2 mL 20 μL / test	Immunogen	Peripheral blood lymphocytes		
	Immunoglobulin	lgG1		
	Species	Mouse		
COULTER.	Source	Ascites		
	Purification	Protein A affinity chromatography		
λ excitation 488 nm		Fluorescein isothiocyanate (FITC)		
		488 nm		
IVD	Emission peak	525 nm		
	Buffer	PBS pH 7.2 plus 2 mg / mL BSA and 0.1% NaN_3		

USE

This fluorochrome-conjugated antibody permits the identification and numeration of cell populations expressing the CD3 antigen present in human biological samples using flow cytometry.

PRINCIPLE

This test is based on the ability of specific monoclonal antibodies to bind to the antigenic determinants expressed by leucocytes.

Specific staining of the leucocytes is performed by incubating the sample with the IOTest reagent. The red cells are then removed by lysis and the leucocytes, which are unaffected by this process, are analyzed by flow cytometry.

The flow cytometer measures light diffusion and the fluorescence of cells. It makes possible the delimitation of the population of interest within the electronic window defined on a histogram, which correlates the orthogonal diffusion of light (Side Scatter or SS) and the diffusion of narrowangle light (Forward Scatter or FS). Other histograms combining two of the different parameters available on the cytometer can be used as aids in the gating stage depending on the application chosen by the user.

The fluorescence of the delimited cells is analyzed in order to distinguish the positivelystained events from the unstained ones. The results are expressed as a percentage of positive events in relation to all the events acquired by the gating.

EXAMPLES OF CLINICAL APPLICATIONS

The CD3 antigen is a protein complex, which consists of 5 polypeptide chains (γ , δ , ϵ , ζ , η) linked to TCR (1, 2). The CD3 antigen is expressed only on T lymphocytes and on a subpopulation of thymocytes (3). In peripheral blood, approximately 67 to 76% of lymphocytes are CD3+; this percentage is lower in young children and varies according to age (4).

This reagent enables the characterization and numeration of T lymphocytes in immune system disorders: immune deficiencies, auto-immune hypersensitivity reactions, disorders. viral infections, restoration of the immune response after bone marrow and/or organ transplantation. In malignant blood dyscrasias such as leukaemias and lymphomas, it permits the follow-up and phenotyping of CD3⁺ populations (5 - 8).

STORAGE AND STABILITY

The conjugated liquid forms must be kept at between 2 and 8°C and protected from light, before and after the vial has been opened. Stability of closed vial: see expiry date on vial. Stability of opened vial: the reagent is stable for 90 days.

PRECAUTIONS

1. Do not use the reagent beyond the expiry date.

- 2. Do not freeze.
- 3. Let it come to room temperature (18 25°C) before use.
- 4. Minimize exposure to light.
- 5. Avoid microbial contamination of the reagents, or false results may occur.
- 6. Antibody solutions containing sodium azide (NaN₃) should be handled with care. Do not take internally and avoid all contact with the skin, mucosa and eyes.

Moreover, in an acid medium, sodium azide can form the potentially dangerous hydrazoic acid. If it needs to be disposed of, it is recommended that the reagent be diluted in a large volume of water before pouring it into the drainage system so as to avoid the accumulation of sodium azide in metal pipes and to prevent the risk of explosion.

- 7. All blood samples must be considered as potentially infectious and must be handled with care (in particular: the wearing of protective gloves, gowns and goggles).
- 8. Never pipette by mouth and avoid all contact of the samples with the skin, mucosa and eves.
- 9. Blood tubes and disposable material used for handling should be disposed of in ad hoc containers intended for incineration.

SAMPLES

Venous blood or bone marrow samples must be taken using sterile tubes containing an EDTA salt as the anticoagulant. The use of other anticoagulants is not recommended.

samples should be kept at room The temperature (18-25°C) and not shaken. The samples should be homogenized by gentle agitation prior to taking the test sample.

The samples must be analyzed within 24 hours of venipuncture.

METHODOLOGY

NECESSARY MATERIAL NOT SUPPLIED

- Sampling tubes and material necessary for sampling
- Automatic pipettes with disposable tips for 20, 100 and 500 µL.
- Plastic haemolysis tubes.
- Calibration beads: Flow-Set[™] Fluorospheres (Ref. 6607007).
- Red cell lysis reagent with washing stage after lysis. For example: VersaLyse™ (Ref A09777)
- Leucocyte fixation reagent. For example : IOTest 3 Fixative Solution (Ref. A07800).
- Isotypic control: IOTest reagent. IgG1-FITC (Ref. A07795).
- Buffer (PBS: 0.01 M sodium phosphate; 0.145 M sodium chloride; pH 7.2).
- Centrifuge.

• Automatic agitator (Vortex type).

· Flow cytometer.

PROCEDURE

NOTE: The procedure below is valid for standard applications. Sample and/or VersaLyse volumes for certain Beckman Coulter applications may be different. If such is the case, follow the instructions on the application's technical leaflet. For each sample analyzed, in addition to the test tube, one control tube is required in which the cells are mixed in the presence of the isotypic control (Ref. A07795).

- 1. Add 20 µL of specific IOTest conjugated antibody to each test tube, and 20 µL of the isotypic control to each control tube.
- 2. Add 100 µL of the test sample to both tubes. Vortex the tubes gently.
- Incubate for 15 to 20 minutes at room temperature $(18 25^{\circ}C)$, protected from light.
- 4 Then perform lysis of the red cells, if necessary, by following the recommendations of the lysis reagent used. As an example, if you wish to use VersaLyse (Ref. A09777), refer to the leaflet and follow preferably the procedure called "with concomitant fixation", which consists of adding 1 mL of the "Fix-and-Lyse" mixture prepared extemporaneously. Vortex immediately for one second and incubate for 10 minutes at room temperature, protected from light.

If the sample does not contain red cells, add 2 mL of PBS.

- 5. Centrifuge for 5 minutes at 150 x g at room temperature.
- 6 Remove the supernatant by aspiration.
- Resuspend the cell pellet using 3 mL of PBS. 7
- 8. Repeat step 5.
 - 9 Remove the supernatant by aspiration and resuspend the cell pellet using:
 - 0.5 mL or 1 mL of PBS plus 0.1% of formaldehyde if the preparations are to be kept for more than 2 hours and less than 24 hours. (A 0.1% formaldehyde PBS can be obtained by diluting 12.5 µL of the IOTest 3 Fixative Solution (Ref. A07800) at its 10X concentration in 1 mL of PBS).
 - $0.5~\mbox{mL}$ or $1~\mbox{mL}$ of PBS without formaldehyde, if the preparations are to be analyzed within 2 hours.

NOTE: In all cases, keep the preparations between 2 and 8°C and protected from light.

PERFORMANCE SPECIFICITY

The monoclonal antibody (mAb) UCHT1 reacts with the ϵ chain of the CD3 complex (9).

UCHT1 mAb was assigned to CD3 during the 1st HLDA workshop on Human Leucocyte Differentiation Antigens, held in Paris, France, in 1982 (WS Code: 3, Section T) (10).

LINEARITY

To test the linearity of staining of this reagent, a positive cell line (HPBALL) and a negative cell line (RAMOS) were mixed in different proportions with a constant final number of cells, so that the positive line/negative line ratio of the mixture ranged from 0 to 100%.

Aliquots were stained using the procedure described above and linear regression between the expected values and the observed values was calculated.

Specificity	Linear regression	Linearity (R ²)
CD3	Y = 0.991 X + 1.28	0.999

EXPECTED VALUES

Each laboratory must compile a list of reference values based upon a group of healthy donors from the local population. This must be done by taking age, sex and ethnic group into account, as well as any other potential regional differences.

In our laboratories, the whole blood samples of 50 healthy adults were treated using the reagent described above. The results obtained for the count of the positive events of interest with this reagent are given in the tables below:

Lymphocytes	Number	Mean (%)	SD	CV (%)
CD3 ⁺	50	72.9	9.1	12.5

INTRA-LABORATORY REPRODUCIBILITY

On the same day and using the same cytometer, 12 measurements of the percentage of staining of a positive target were carried out (peripheral blood CD3 lymphocytes). The results obtained are summarized in the following table:

Positive Target	Numbe r	Mean (%)	SD	CV (%)
CD3 ⁺ Lympho	12	65.7	1.03	1.6

INTER-LABORATORY REPRODUCIBILITY

On the same day and for the same population (peripheral blood CD3 lymphocytes), 12 measurements of the percentage of stained cells were carried out by two technicians and the preparations analyzed using two different cytometers. The results obtained are summarized in the following tables:

Cytometer n° 1:

Positive Target	Number	Mean (%)	SD	CV (%)
CD3 ⁺ Lympho	12	65.7	1.03	1.6

Cytometer n° 2:

Positive Target	Number	Mean (%)	SD	CV (%)
CD3 ⁺ Lympho	12	68.0	0.5	2.1

LIMITATIONS OF THE TECHNIQUE

- Flow cytometry may produce false results if the cytometer has not been aligned perfectly, if fluorescence leaks have not been correctly compensated for and if the regions have not been carefully positioned.
- It is preferable to use a RBC lysis technique with a washing step as this reagent has not been optimized for "no wash" lysis techniques.
- 3. Accurate and reproducible results will be obtained as long as the procedures used are in accordance with the technical insert leaflet and compatible with good laboratory practices.
- 4. The conjugated antibody of this reagent is calibrated so as to offer the best specific signal/non-specific signal ratio. Therefore, it is important to adhere to the reagent volume/sample volume ratio in every test.
- In the case of a hyperleucocytosis, dilute the blood in PBS so as to obtain a value of approximately 5 x 10⁹ leucocytes/L.
- 6. In certain disease states, such as severe renal failure or haemoglobinopathies, lysis of red cells may be slow, incomplete or even impossible. In this case, it is recommended to isolate mononucleated cells using a density gradient (Ficoll, for example) prior to staining.

MISCELLANEOUS

See the Appendix for examples and references.

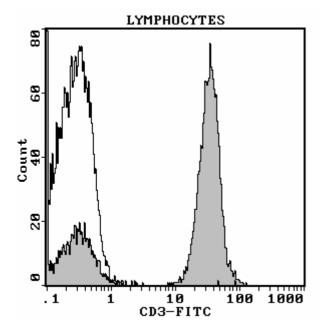
TRADEMARKS

The Beckman Coulter logo, COULTER, EPICS, EXPO, Flow-Set, IOTest, System II, XL are registered trademarks of Beckman Coulter Inc.

MANUFACTURED BY:

IMMUNOTECH a Beckman Coulter Company 130 avenue de Lattre de Tassigny B.P. 177 – 13276 Marseille Cedex 9 France Customer Services: (33) 4 91 17 27 27

www.beckmancoulter.com



APPENDIX TO REF A07746

EXAMPLES

The graph below is a monoparametric representation (Count vs. Fluorescence Intensity) of lyzed normal whole blood sample. Staining is with IOTest CD3-FITC Conjugated Antibody (Ref. A07746). Gate is on lymphocytes. A mouse FITC-conjugated IgG1 isotypic control (Ref. A07795) is shown in light.

Acquisition and analysis are performed with a COULTER[®] EPICS[®] XL[™] flow cytometer equipped with System II[™] software.

REFERENCES

- 1. Thibault, G., Bardos, P., "Compared TCR and CD3 ϵ expression on $\alpha\beta$ and $\gamma\delta$ cells. Evidence for the association of two TCR heterodimers with three CD3 ϵ chains in the TCR/CD3 complex", 1995, J. Immunol., 154, 3814-3820.
- Shores, E.W., Love, P.E., "TCR ζ-chain in T cell development and selection", 1997, Cur. Opin. Immunol., 9, 380-389.
- van Agthoven, A., Terhorst, C., Reinherz, E.L., Schlossman, S.F., "Characterization of T cell surface glycoproteins T1 and T3 present on all human peripheral T lymphocytes and functional mature T lymphocytes", 1981, Eur. J. Immunol., 11, 18-21.
- Hannet, I., Erkeller-Yuksel, F., Lydyard, P., Deneys, V., DeBruyère, M., "Developmental and maturational changes in human blood lymphocyte subpopulations", 1992, Immunol. Today, 6, 13, 215-218.
- Rothe, G., Schmitz, G., Adorf, D., Barlage, S., Gramatzki, M., Höffkes, H.G., Janossy, G., Knüchel, R., Ludwig, W.D., Nebe, T, Nerl, C., Orfao, A., Serke, S., Sonnen, R., Tichelli, A., Wörmann, B., "Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies", 1996. Leukemia, 10, 877-895.
- hematopoietic malignancies", 1996, Leukemia, 10, 877-895.
 Nicholson, J.K.A., Hearn, T.L., Cross, G.D., White, M.D., "1997 Revised guidelines for performing CD4+ T-cell determinations in persons infected with human immunodeficiency virus (HIV), 1997, Morbidity and Mortality Weekly Report, RR-2, 46, 1-29.
- Morbidity and Mortality Weekly Report, RR-2, 46, 1-29.
 Bray, R.A., Gebel, H.M., "Applications of flow cytometry to transplantation of solid organs", 1990, Labmedica, Feb/March, 28-30.
- Velardi, A., Terenzi, A., Cucciaioni, S., Millo, R., Grossi, C.E., Grignani, F., Martelli, M.F., "Imbalance within the peripheral blood Thelper (CD4+) and T-suppressor (CD8+) cell populations in the reconstitution phase after human bone marrow transplantation", 1988, Blood, 71, 1196-1200.
- Tunnacliffe, A., Olsson, C., Traunecker, A., Krissansen, G.W., Karjalainen, K., De la Hera, A., "The majority of CD3 epitopes are conferred by the ε chain", 1989, Leucocyte Typing IV, White Cell Differentiation Antigens. W. Knapp, et al., Eds., Oxford University Press, 295-296.
- Bernard, A., Brottier, P., Georget, E., Lepage, V., Boumsell, L., "Joint report of the first international workshop on human leucocyte differentiation antigens by the investigators of the participating laboratories", 1984, Leucocyte Typing I, Bernard, A. et al., Springer Verlag, 9-135.